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Overview 

•  The CMS Detector 
•  Muons and Event Display 
•  Classification and Machine Learning 
•  Signal and Background Discrimination in 

Dimuon Final State 
•  Summary 
•  Acknowledgements 
 

Shannon Massey 2 



The Compact Muon Solenoid (CMS) 
Detector 

•  General-purpose collider detector 
•  Modular design 
•  Four main parts 

•  Tracker, Electromagnetic Calorimeter (ECAL), Hadron Calorimeter 
(HCAL), Muon System 

•  A large solenoid magnet 
•  Operated a field of 3.8 Tesla 
•  ~100,000 times the magnetic field of the Earth 
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Compact Muon Solenoid (CMS) 
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Muons 

•  CMS identifies and measures muons using silicon tracker and 
the outer muon system 

•  Produced in the decay of Standard Model and potential new 
particles 
•  Example: Z→µµ, H→ZZ→4µ, Z’ →µµ 

•  Charge: ± 1 e 
•  Mass of ~105.7 MeV/c2  

•  Mass of an electron = ~.51 MeV/c2 

•  Half-Life of 2.2 µs  
•  Good to study since it can be identified easily and measure 

well 
•  Also, smaller backgrounds in high pT muon final states 
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Fireworks 

•  Event display through Fireworks (cmsShow) 
•  Ability to visualize reconstructed data 
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Binary Classification with Neural Networks 

•  Discrimination between signal and background events/objects 
•  Essential to find interesting and rare signal events within 

gigantic data sets 
•  Analogous to finding a needle in a haystack  

•  Machine Learning algorithms can be used to classify data 
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Machine Learning 

•  Supervised Learning 
•  Trained through numerous labelled examples 

•  Examples: Siri, Image Recognition, Text Recognition (Spam), many 
others 

•  Unsupervised Learning 
•   No labels are given to the learning algorithm in the examples 
•  Must find structure in the inputs on its own 
•  Used to: recognize patterns within data, categorize data 
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Toolkit for Multivariate Analysis (TMVA) 

•  Integrated into ROOT 
•  Includes many different multivariate classification algorithms 

•  Fisher discriminants (linear discriminant analysis) 
•  K-Nearest Neighbor 
•  Boosted Decision and Regression Trees 
•  Artificial Neural Networks (ANN) 

•  All algorithms are supervised learning 
•  My work focused on ANNs 

•  More specifically Multilayer Perceptrons (MLPs) 
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Multilayer Perceptrons 

•  Network of “hidden”, simple 
neurons (perceptrons) 

•  Linked by feed-forward 
connections 

•  In order to learn from a set of 
inputs, TMVA MLPs use back-
propagation (of errors) 
•  To change the weights, we must 

compute the partial derivative of the 
weights (gradient descent method) 

•  The derivatives give us the direction 
(+/-) the weights must change to 
reduce error 

•  Goal: minimize miscalculation error 
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Multilayer Perceptrons 

•  In TMVA, activation 
functions for MLPs: 

•   Linear: 𝑥 

•  Sigmoid: ​1/1+ ​𝑒↑−𝑥   
•  Tanh: ​​𝑒↑2𝑥 −1/​
𝑒↑2𝑥 +1  

•  Sigmoid popular for 
binary classification 
•  Output between 0 and 1 
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Toy Data within TMVA 

•  TMVA provides an example with a toy data set 
•  Signal and Background for var 1, var 2, var 3, var 4 
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MLP Output from Toy Data 

•  MLP Attributes 
–  Sigmoid activation 

function 
–  600 training cycles 
–  8 different MLPs 

•  1 and 2 Hidden 
Layers 

•  4, 9, 14, 19 Nodes 

•  Difficult to 
determine 
effectiveness of the 
algorithms by eye 
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MLP Analysis of Toy Data 

•  Receiver Operating Characteristic Curve (ROC Curve) useful in 
determining effectiveness of an algorithm 

•  Plots background at each x-value/total background vs. signal at each x-
value/total signal 

•  AUC of a perfect algorithm = 1 
•  AUC of a completely random = .5 
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Toy Data: Area Under the Curve Table 
Total Hidden 
Layers: 

Nodes in 
Layer One: 

Nodes in 
Layer Two: 

Area Under the ROC 
Curve (AUC) 

1 4 0.9189 
1 9 0.9194 
1 14 0.9192 
1 19 0.9195 
2 4 4 0.9202 
2 9 9 0.9190 
2 14 14 0.9195 
2 19 19 0.9200 



Event Reconstruction 

•  Many Thanks to Grace for dimuon samples! 
•  Applied a Python script with C++ analyzer to .root generation 

file 
•  Select desired events (Muons) 
•  Include necessary attributes (pt  , eta, phi) 
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Classification with Dimuons (Case 1) 

•  MLP implementation to discriminate Dimuons in Mass Peak 
and side-bands 
•  Signal input: Kinematic Variables Dimuon Mass Peak  

•  80 GeV – 100 GeV (1,758 Events within the range) 

•  Background input: surrounding Drell-Yan background 
•  Mass: 60 GeV - 80GeV (1,867 Events within the range) 
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Classification of Dimuon Mass Peak 

•  Signal and Background inputs 
•  Four Variables included in the calculation of the dimuon mass 

•  High Transverse Momentum (pt), Low pt, Delta Eta, Delta Phi 

𝑀µμ+µμ−=√⁠2​𝑝↓𝑡1 ​𝑝↓𝑡2 ​(cosh⁠(∆η)− ​cos⁠(∆φ))    
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Classification (Case 1) 

•  MLP Attributes 
•  Sigmoid activation function 
•  5,000 training cycles 
•  2 MLPs 

•  1 and 2 Hidden Layers 
•  4 Nodes 

Shannon Massey 18 



Classification (Case 2) 

•  Signal and Background 
•  Signal input: Kinematic Variables in Dimuon Mass Peak 

•  80-100 GeV (1,758 events) 

•  Background input: Surrounding Drell-Yan Mass Peak 
•  100-120 GeV (1,275 events)  
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Classification (Case 2) 

•  MLP Attributes 
•  Sigmoid activation function 
•  5,000 training cycles 
•  2 MLPs 

•  1 and 2 Hidden Layers 
•  4 Nodes 
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Classification (Case 3) 

•  Signal and Background 
•  Signal input: Dimuon Mass Peak 

•  80-100 GeV (1,758 events) 

•  Background input: Surrounding Drell-Yan Mass Peak 
•  60-80 GeV (1,867 events) and 100-120 GeV (1,275 events)  
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Classification (Case 3) 

•  MLP Attributes 
•  Sigmoid activation function 
•  5,000 training cycles 
•  2 MLPs 

•  1 and 2 Hidden Layers 
•  4 Nodes 
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MLP Analysis of Dimuon Mass 
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Summary 

•  Neural Networks can be used to separate signal and 
background events in collisions at CMS 

•  We used TMVA to apply neural networks in dimuon final state 
events 
•  Applied to Z→µµ and Drell-Yan 

•  Deeper MLPs do not increase separation much in these 
examples 
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Simple Example 

X 

Y 
F * 

•  A neuron can be thought of as a real-valued circuit 
•  Goal: slightly tweak input to increase the output 
•  Find ​𝜕𝐹/𝜕𝑋  and ​𝜕𝐹/𝜕𝑦  
•  Change each by a small step size 

•  X’ = X + step * ​𝜕𝐹/𝜕𝑥  
•  Y’ = Y + step * ​𝜕𝐹/𝜕𝑌  
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Advances in Neural Networks; Deep 
Learning 

•  Deep Neural Networks 
•  Very difficult to train in the past due to many layers 
•  Recent advances in many research labs have made it easier to train 
•  Relatively new Python modules such as Theano and PyLearn2 provide 

necessary framework for new DN studies 

•  Deep Belief Networks 
•  Greedy layer-wise unsupervised learning 

•  Self-Organizing Maps 
•  Check out LISA Lab at University of Montreal for interesting 

work regard Deep Learning 
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